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Abstract-This paper reports the optimal board-to-board spacing and maximum total heat transfer rate 
from a stack of parallel boards cooled by laminar forced convection. The optimal spacing is proportional 
to the board length raised to the power l/2, the property group (~cx)“~, and (AP)-‘,4, where AP is the 
pressure head maintained across the stack. The maximum total heat transfer rate is proportional to (AP) ’ ‘, 
the total thickness of the stack (H), and the maximum allowable temperature difference between the board 
and the coolant inlet. Board surfaces with uniform temperature and uniform heat flux are considered. It 
is shown that the surface thermal condition (uniform temperature vs uniform heat flux) has a minor effect 

on the optimal spacing and the maximum total heat transfer rate. 

1. INTRODUCTION 

THE OBJECTIVE of this study is to determine the optimal 
spacing for maximum heat transfer from a package 
(stack) of parallel plates that are cooled by forced 

convection. An application of this arrangement is the 
forced-air cooling of a stack of electronic circuit 
boards. Of interest in such an application is the 
maximum heat transfer, i.e. the maximum density of 
heat-generating electronics that can be fitted in a pack- 
age of specified volume. 

The optimal board-to-board spacing has been 
determined for applications in which the cooling is by 
natural convection. This development was com- 
municated in 1984 simultaneously by Bar-Cohen and 
Rohsenow [I] and Bejan [2]. The most recent reviews 

of the fundamental heat transfer literature on elec- 
tronic equipment cooling [3,4] show that the optimal 
spacing has not been determined for packages that 
are cooled by forced convection. The present study 
fills this void, and develops concrete means for cal- 
culating the optimal board-to-board spacing and the 
associated features of the optimized package. 

2. ORDER OF MAGNITUDE ANALYSIS 

Consider the geometry of Fig. 1, in which the cool- 
ant inlet temperature T, and the pressure head estab- 
lished by the compressor (or pump) AP are fixed. In 
this simple analysis the flow is assumed to be laminar, 
and the board temperature is assumed to be uniform 

at the safe level T,. Each board has a thickness t 

that is sufficiently smaller than D. To determine the 
optimal board-to-board spacing D is the same as 
determining the optimal number of boards (n >> 1) 

that can fill a space of thickness H 

H 
n 2 -. 

D 

The following analysis is analogous to the method 
employed by Bejan [2] to solve the natural convection 
counterpart of the same design problem. 

(a) Consider first the limit D + 0, when each chan- 
nel is slender enough so that the flow is fully developed 
all along L. In the same limit, the fluid outlet tem- 
perature approaches the board temperature T,. It is 
not difficult to show that the average fluid velocity in 
each channel is 
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FIG. 1, Stack of parallel boards cooled by forced convection. 
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NOMENCLATURE 

c,> specific heal at constant prcssurc 7‘, coolant ink3 tcmpcraturc 
Ll board-to-board spacing AT,,,, log-mean temperature dih’crcncc. 

4, hydraulic diamctcr, 3D equation ( 18) 
,f& apparent friction factor I; cross-section averaged longitudinal 
I1 L-averaged heat translt‘r coeficicnt v&city 
if height (thi~krless) ofcntirc stack. Fig. 1 Liz fret stream v&city 
k fluid thermal conductivity .\-\-h dimensionless longitudinal coordinate 

L board length for the thermal entrance region. 
riz' mass flow rate per unit length equation (I 7) 

IZ number of channels, H/D .Y’ dimensionless longitudinal coordinate 

ii dimensionless pressure head, equation for the hydrodynamic entrance region, 
(22) equation (20). 

P pumping power 

AP pressure head 
Pr Prandtl number, r/a Greek symbols 

Y’ total heat transfer rate per unit length iy. fluid thermal diffusivity 

Cl: heat transfer rate from one surface per 6 dimensionless board-to-board spacing. 
unit length equation (23) 

YIZ uniform heat llux 1’ viscosity 
-,I 
Y L-averaged heat flux 1' kinematic viscosity, {l/p 

Y”’ avcragc volumetric heat generation rate, P fluid density 
q’;HL 7, L-averaged wall shear 

RC duct Reynolds number, I/&iv stress. 

Re, wall Reynolds number. i’i./rz 

t board thickness 

T <>“I coolant outlet temperature Subscripts 

TN maximum (allowable) surface max maximum 
temperat urc opt optimal. 

and that the total mass flow rate riz’ through the stack 
of height His 

The mass flow rate rir’ is expressed per unit length 
in the direction perpendicular to Fig. 1. The total heat 
transfer rate removed from the cntirc sandwich by the 
uE1’ stream is 

In conclusion, in the limit D--f 0 the total cooling 
rate (or total rate of allowable Joule heating in the 
package) decreases as n’. This trend is illustrated 
qualitatively as curve (a) in Fig. 2. 

(b) In the opposite limit, D + cr_. the boundary 
layer that lines each surface becomes ‘distinct’. In 
other words, each channel looks like the entrance 
region to a parallel-plate duct. The overall pressure 
drop is fixed at AP; therefore, the first question here 
is what is the free-stream velocity U, that sweeps 
these boundary layers? 

The overall force balance on the control volume 
H x L requires 

AP*H = tz*2*5,L (3 

in which n is the number of channels and t, is the L- 
averaged wall shear stress 

r\, - = 1.32XRe, ’ ’ $6’;. (6) 

Combined, equations (5) and (6) yield 

(7) 

The total heat transfer rate from one of the L- 
long surface (y’,) can be calculated by recognizing the 
overall Nusselt number 

This yields 

q’ - tJ2, limit (a) 

0 - &pt D 

FIG. 2. Determining the optimal spacing by intersecting the 
asymptotes (4) and ( 1 I ). 
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y’, = q”L = k( T, - T,)0.664Pr”3 UK’ 
(-----I 

182 

V 
. (9) 

The total heat transfer rate released by the entire stack 
is 2n times larger than q’, (we are assuming that both 
surfaces of one board are Joule-heated to TW) : 

qb = 2ny’, = 2nk(T,- Tx)0.664Pr’,’ 

(10) 

In view of then and U,, expressions listed in equations 
(1) and (7), the total heat transfer rate becomes 

q’h = 1.208k(T, - T, )H -~ ..i;i--~ 
P v’D-‘- ’ 

(11) 

The second conclusion we reach is that in the targe- 
I) limit the total heat transfer rate decreases as D’ ‘. 

This second trend has been added as curve (b) to the 
same graph (Fig. 2), to suggest that the maximum of 
the actual (unknown) curve q’(D) can only occur at 
an optimal spacing Dopt that is of the same order as 
the D value obtained by intersecting the asymptotes 
(4) and (1 I). It is easy to show that the order 
of magnitude statement qh N yi yields the optimal 
spacing for laminar forced convection 

in which 1’ and r are the viscosity and thermal diffu- 
sivity of the coolant. 

The order of magnitude of the maximum heat trans- 
fcr rate that corresponds to D = D,,, is obtained by 
combining equations (4) and (10) : 

Hcp(T,,,- T,). (13) 

The sign ’ <’ is a reminder that the actual q/maximum 
is lower than the q’ value obtained by intersecting 
asymptotes (a) and (b) in Fig. 2. The group of prop- 
erties and dimensions formed on the right side of 
equation (13) represents the correct scale of q&. We 
return to the design implications of this scale in Sec- 
tion 5. 

The simple argument presented in this section can 
be repeated for the situation in which only one surface 
of the board is Joule-heated to T,, and the other 
surface can be modeled as adiabatic. The only change 
is that 2n is replaced by n in equation (lo), so that the 
results (12) and (13) are now replaced by 

(14) 

~G0’;- TX). (15) 

It is worth comparing equations (14) and (15) with 
equations (12) and (13) to see the preservation of the 

‘correct’ scales derived for D,,, and qkLlx. In other 
words, the change in the thermal boundary conditions 
of one board-to-board channel affects (by a factor of 
order 1) only the value of the numerical coefficient in 
the expressions for Dopl and q&x. This observation 
will be reinforced by a comparison of the results 
reported in the next two sections. 

3. ISOTHERMAL SURFACES 

The accuracy of the preceding results can be 
assessed by considering a more exact analysis of the 
developing flow and heat transfer in each board-to- 
board channel. Consider first the case where the two 
surfaces that form one channel are isothermal (T,). 

The overall Nusselt number for a channel that has 
a length L comparable with the entrance length is 
described well by Stephan’s [5] empirical formula (see 
also Shah and London [6]) 

--. (16) 
I +O.O358(.u*) -“” Pr” ” 

This formula is valid for 0.1 < PF < 1000. In it L), is 
the hydraulic diameter (2D), 4” is the L-averaged heat 
flux, and 

(17) 

In equations (17) and (18), U is the cross-section 
averaged longitudinal velocity and To,, is the bulk 
temperature of the stream in line with the trailing edge 
of the board (i.e. at the channel outlet). 

According to Shah [7j and Shah and London 161, 
the pressure drop across the channel can be estimated 
with the formula 

3.44 
&, Re = (WT.,‘” + 

24+0.674,(4x+)-3.44/(s*)“’ 

I +0.000029(x+) - ’ 

(19) 

in which 

The apparent friction factor method (19)-(21) 
accounts for friction along the two surfaces and the 
acceleration of the fluid core as the boundary layers 
thicken along the surfaces. 

The D,,, scale derived in the preceding section 
serves as a basis for the definition of the dimensionless 
pressure drop and board-to-board spacing, 

BP* L’ 
P = ----- --- 

w 
(22) 



(23) 

Equations (16)-(21) arc then rewritten in terms of,,. 
(1 and Rc, = I/L; 11: however, the resulting cxprcssions 
are omitted for brevity. We note only that 

The heat transfer rate extracted from one channel 
is 2q”L. An additional equation that is needed for the 

calculation of T,,,, is the first law of thermodynamics 
for one channel 

2qI, = pUDc,,(T,,,,, - T, ). (25) 

Finally, the total heat transfer rate extracted from 
the entire stack can be calculated as q’ = 2ny”L. The 
resulting expression can be nondimensionalized in the 
manner anticipated in equation (13). 

4 
(pAP/Pr)’ ‘Hc,(T,, ~ T, ) = ” Rci ’ 

, 2 To,, - 7-r 
T,-T, 

(26) 

The right hand side of this last expression represents 
the objcctivc function : when maximized, this quantity 
delivers the magnitude of the leading numerical 
coefficient that belongs on the right side of the scaling 
law (13). The results of the maximization procedure 
are summarized in Table I. They were obtained para- 
metrically by using equations (16)-(21), (25) and (26). 
Assumed first was the value of .Y ‘. which played the 
role of parameter. The numerical work consisted of 
calculating in order the right side of equation (19). 6. 
x*, the group Re, p ’ ?. the right side of equation 
(16), the ratio (T,- T,)!(T,- T,,,,), and finally the 
right side of equation (26). In this way emerges 
numerically the one-to-one relationship between the 
spacing D (or D,. or ii) and the total heat transfer 
rate (q’). 

Figure 3 shows the maximum exhibited by q’ with 
respect to D, for the case t’r = 0.72. The optimal 
dimensionless spacing (3.033 on the abscissa) is only 
1 I % grcatcr than the order-of-magnitude estimate 
developed in equation (12). Even more impressive is 
that the use of the rough D value recommended by 
equation (12) lcads to a total heat transfer rate q’ that 
is only 2.5% below the maximum value reported in 
Table 1. 

By reading Table 1 and Fig. 3 we find that even the 

[)rdcr-ol-magnittldc formula for lhc nlii\lniuni hc,11 
transfer rate (equation (1 3)) is fairly ;Iccurats. Than 
early c~liniatc is bctwccn IX and Y” ,) grcatci- that~ 

the &I.,, value caIcuIatcd based on the information 
dcvclopcd in this section. 

Figure 4 illustrates the position of the r/’ ma.ximum 
on the .v- scale when I’/, = 0.72 (note that in thi:, cast. 
.\‘, 2. v*). The last two columns of Table I show that 
the maximum heat trnnsfcr rate is achieved when .Y” 

(not .\- ’ ) is consistently of order 0.04. This means that 
the optimal spacing must be such that the board length 

L is of the same order as the ~/MVXM/ entrance length 
of the parallel-plate channel. This gcomctric feature 
agrees with the corresponding result dcbclopcd I’ot- 

the optimal natural convection cooling of ;I stack of 
vertical boards 11. 21. 

4. UNIFORM HEAT FLUX SURFACES 

When the two surFaces that define one channel 
release the uniform heat flux q” the maximum allow- 
able temperature of the board occurs at its trailing 

edge. In this section r, denotes that temperature. i.c. 
the local wall temperature at the downstream distance 
I*. 

The local Nusselt number for the cntrancc region 
of a constant-flux, parallel-plate channel was reported 

numerically by Hwang and Fan [8]. It is easy to check 
that their local Nusselt number data arc fitted within 
3% by empirical formulas of the ChurchillLUsagi [9] 

tYPc 

(I+ = 0.7) (27) 

(Pr = 10). (28) 

Equation (25) continues to apply, except that now 4” 
is replaced by (I”. The equations that in the preceding 
section described the fluid mechanics of the channel 
(equations (19)-(21)) remain unchanged. 

The results of maximizing the total heat transfer 
rdte numerically are reported in Table 2. These can bc 
compared with the results listed in Table 1 to conclude 
that the type of thermal boundary condition has little 
eflect on the optimal board-to-board spacing. For the 

Table 1. The optimal spacing and maximum total heat transfer rate for a space filled by a stack 01 
parallel boards with both surfaces isothermal 

PI 5 “p’ (D,,,/f.)(AP. L’:/‘z) ’ ’ q:,,,,,‘( oAP:Pr) ’ ‘HC,,( i-,, -. 7‘, ) .Y .,-* 

0.72 6.066 3.033 0.470 0.03 I 0.043 1 
6 6.155 3.077 0.522 0.207 0.0346 

20 6.156 3.078 0.527 0.675 0.0338 
100 6.1 IO 3.055 0.526 3.45 0.0345 

IO00 6.050 3.025 0.523 35.8 0.035x 
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FIG. 3. The optimal board-to-board spacing for maximum heat transfer (Pr = 0.72, isothermal surfaces). 

same reason, the channel continues to resemble the 
thermal entrance region between two parallel plates 
(note the similar x* values in Table 2 and Table 1). 

The maximum total heat transfer rate for the 
unifo~-~ux condition is approximately 20% smaller 
than when the board surfaces are isothermal. This is 
to be expected because T, is the ceiling (allowable) 
surface temperature for both cases, and the isothermal 
surface has a much higher heat flux near its leading 
edge than the uniform-flux surface. In other words, 
the isothermal surface operates at the ceiling level T, 
over its entire length, while the uniform-flux surface 
reaches the ceiling level only at its trailing edge. 

5. DlSCUSSlON 

The chief conclusion of this study is that it is poss- 
ible to select the board-to-board spacing optimally in 
order to maximize the total heat transfer rate from 
the H x L stack to the stream of coolant. This was 
first demonstrated by means of order-of-magnitude 

analysis, equations (12) and (13). The same method 
permitted a quick look into the effect of asymmetric 
thermal boundary conditions, e.g. a board that gen- 
erates heat on one side and is insulated on the other 
side. 

The study continued with more exact solutions for 
the same problem, by assuming isothermal board sur- 
faces (Section 3) and later uniform-flux surfaces (Sec- 
tion 4). The main message of these analyses is that the 
order-of-magnitude results of Section 2 are correct in 
a scahng sense and fairly accurate numerically. They 
also showed that the type of thermal boundary con- 
dition has only a minor effect on the optimal board- 
to-board spacing and the maximum heat transfer rate. 

Beginning with equation (12) we learned that the 
optimal spacing increases as II,‘;2 and decreases as 
LIP- ‘j4. The choice of coolant affects the ~rfo~ance 
of the assembly through the value of the group of 
properties (pa) “4. For example, if AP and L are fixed, 
the properties are such that the switch from using 
air (1 atm, IOOC) to using Freon 12 (near-saturated 

t I t 

0 001 0.01 0.1 1 

X+ 

FIG. 4. The position of the heat transfer maximum on the X+ scale (Pr = 0.72, isothermal surfaces). 



Table 2. The optimal spacing and maximum total heat transfer rate for a space filled by a stack 
of parallel boards with uniform heat fiux on hoih sur~aaccs 

0.7 6.136 3.06X 0.37 1 0.029 0.04 I6 
IO 6.574 3.287 0.424 0.264 0.0264 

liquid at 367 K) would require a four-fold decrease in 
the optimal spacing 

The maximum heat transfer rate is proportional to 
(T,-T,,), H and (AP)‘:?, equation (13). The cor- 
responding volumetric heat-generating density of the 

H x L package increases with (T, - T, ) and (AP) ‘,‘I* 
and decreases with L 

The goodness of the choice of coolant with regard to 
increasing q& is described by the value of the prop- 
erty group cp(p/Pr) I”. Continuing with the numerical 
example of the preceding paragraph, if (T, - T u), A P 
and L are fixed, the switch from air to Freon 12 results 

in a 20-fold increase in the maximum heat generating 
density, 

The results of this study are valid when the flow is 

laminar. This condition acts as a constraint on the 
pressure difference that is maintained across each 
channel. The laminar flow condition is the boundary 
layer criterion Re, $ 5 x 105, because L is of the same 

order or shorter than the hydrodynamic entrance 
length when Pr is of order 1 or larger (recall that L is 
always of the same order as the thermal entrance 
length). By using equation (24), fi - 6 and x* - 0.04. 
the laminar flow criterion reduces to 

Finally, it is worth noting that the q’ optimization 
conclusions reached in this study differ from the con- 
clusions that would be drawn if the H x L system of 
Fig. 1 is viewed as a conventional heat exchanger. In 
the latter, a more meaningful figure of merit is the 
ratio between the total heat transfer rate, q’, and the 
required pumping power, P = ti’AP/p. It can be 

shown that this ratio reaches the following asymptotes 

in the limits (a) and (b) identified in Section 2 : 

41, 
F zr;(T,-T,) (D-0) 

qb 
mF 2 1.46!$(T,-T,) 

(32) 

(D--f cc). (33) 

These expressions show that the ratio q’/P is inde- 
pendent of D when D + 0 and decreases as D 4” as 

D -+ co. In conclusion, the ratio between total heat 
transfer rate and pumping power decreases mono- 
tonically as the spacing D increases. The ratio q’/P 
has the largest value (the constant of equation (32)) 
in the limit D + 0. 
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